Leading off-diagonal approximation for the spectral form factor for uniformly hyperbolic systems

نویسنده

  • Martin Sieber
چکیده

We consider the semiclassical approximation to the spectral form factor K(τ) for twodimensional uniformly hyperbolic systems, and derive the first off-diagonal correction for small τ . The result agrees with the τ -term of the form factor for the GOE random matrix ensemble. PACS numbers: 03.65.Sq Semiclassical theories and applications. 05.45.Mt Semiclassical chaos (“quantum chaos”). 1 E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral form factor of hyperbolic systems: leading off-diagonal approximation

The spectral fluctuations of a quantum Hamiltonian system with time-reversal symmetry are studied in the semiclassical limit by using periodic-orbit theory. It is found that, if long periodic orbits are hyperbolic and uniformly distributed in phase space, the spectral form factor K(τ) agrees with the GOE prediction of random-matrix theory up to second order included in the time τ measured in un...

متن کامل

Leading off-diagonal contribution to the spectral form factor of chaotic quantum systems

We semiclassically derive the leading off-diagonal correction to the spectral form factor of quantum systems with a chaotic classical counterpart. To this end we present a phase space generalization of a recent approach for uniformly hyperbolic systems [1, 2]. Our results coincide with corresponding random matrix predictions. Furthermore, we study the transition from the Gaussian orthogonal to ...

متن کامل

Field theory approach to quantum interference in chaotic systems

We consider the spectral correlations of clean globally hyperbolic (chaotic) quantum systems. Field theoretical methods are applied to compute quantum corrections to the leading (‘diagonal’) contribution to the spectral form factor. Far–reaching structural parallels, as well as a number of differences, to recent semiclassical approaches to the problem are discussed. PACS numbers: 03.65.Sq, 03.6...

متن کامل

Form factor for a family of quantum graphs: an expansion to third order

For certain types of quantum graphs we show that the random matrix form factor can be recovered to at least third order in the scaled time τ from periodic-orbit theory. We consider the contributions from pairs of periodic orbits represented by diagrams with up to two self-intersections connected by up to four arcs and explain why all other diagrams are expected to give higher-order corrections ...

متن کامل

Multiresolution Kernel Approximation for Gaussian Process Regression

(a) (b) (c) Figure: (a) In a simple blocked low rank approximation the diagonal blocks are dense (gray), whereas the off-diagonal blocks are low rank. (b) In an HODLR matrix the low rank off-diagonal blocks form a hierarchical structure leading to a much more compact representation. (c) H2 matrices are a refinement of this idea. (a) In simple blocked low rank approximation the diagonal blocks a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002